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We consider a heteroscedastic linear regression model with replication.

To estimate the variances, one can use the sample variances or the sample

average squared errors from a regression fit. We study the large sample

properties of these weighted least squares estimates with estimated weights

when the number of replicates is small. The estimates are generally

inconsistent for asymmetrically distributed data. If sample variances are

used based on m replicates, the weighted least squares estimates are

inconsistent for m = 2 replicates even when the data are normally

distributed. With between 3 and 5 replicates, the rates of convergence are

slower than the usual square root of N. With m > 6 replicates, the effect of

estimating the weights is to increase variances by (m-5)/(m-3), relative to

weighted least squares estimates with known weights.

Some Key Words Generalized Least Squares, Heteroscedasticity, Regression,

Replication.
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Section 1 Introduction

Consider a heteroscedastic linear regression model with replication:

y. =x +a. (=l N), ..... .
tU 1. i t

In model (1.1). 13 is a vector with p-components, the e.. are independent and .,.

identically distributed mean zero random variables with variance one. The % %

heteroscedasticity in the model is governed by the unknown a.. We have taken

the number of replicates at each x. to be the constant m primarily as a

matter of convenience. In practice, it is fairly common that the number of

design vectors N is large while the number of replicates m is small. Our

intention is to construct an asymptotic theory in this situation for weighted

least squares estimates with estimated weights.

As a benchmark, let PW, be the weighted least squares estimate with

2
weights 1/.. Of course, since the a. are unknown this estimate cannot be

calculated from data. If m is fixed and

N1 T 2 %SWI. =plimN 1  . x x/at ,

then

1/2~ -1
(Nm)l(13.S - 1) *Normal(O, S ) (1.2) e

One common method for estimating weights uses the inverses of the sample

variances.

^2 2 1 ma = (n-l) I (Y. Y (1.3)
j=l j

The resulting weighted least squares estimator will be denoted by 13V"-

This method is particularly convenient because it involves sending only

the estimated weights to a computer program with a weighting option. The

obvious question is whether f'SV is any good, and whether the inferences made

by the computer program have any reliability. In Sections 3 and 4, we answer

both questions in the negative, at least for normally distributed data with

~ % .4. '* ~* ,~* i... %
r%. ~ ~ ~ ~ ~ ~ A %w N,-: *~ V ,.~~~~
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less than 10 replicates at each x. In many applied fields this is already

folklore (Garden, et al., 1980). Yates and Cochran (1938) also have a nice

discussion of the problems with using the sample variances to estimate the

weights. ,

More precisely, for normally distributed data we are able to describe --

the asymptotic distribution of BSV for every m. For m > 6, this is an easy_. ,

moment calculation and we show that V is more variable than 1WS by a

factor (m-3)/(m-5). The same result was obtained by Cochran (1937) for the

weighted mean. Not only is V inefficient, but if one uses an ordinary N

weighted regression package to compute the standard errors from the P.
PSVS

package will be too small by a factor exceeding 20% unless m > 10. For -.

example, if one uses m = 6 replicates, the efficiency with respect to

weighted least squares with known weights is only 1/3, and all estimated

standard errors should be multiplied by /3 = 1.732. For m < 5. we use the

theory of stable laws and Cline (1986ab) to describe the asymptotic

distributions. Perhaps the most interesting result here is that if only

duplicates (m = 2) are used, weighted least squares with estimated weights is

not even consistent. The results are outlined in Table 1.

TABLE 1 AFTER THIS POINT]

-'A

A second method for estimating weights is to use the linear structure of

the means. Write PL for the unweighted least squares estimate and define the

average squared error estimate by

^2 ^2 -l T 2aQ= ai _(pl) = m 2 (Yi; -X
j=l *e

The resulting weighted least squares estimate will be denoted by PEL-

A third method is the normal theory maximum likelihood estimate '~"MIJ

".- I



-3-

which is a weighted least squares estimate with weights the inverse of

-2 -2 ,
a = (L (1 . 5)0i2"1L

.4 L ' a'.

This can be thought of as an iterated version of

These methods have been discussed in the literature for normally ,.

distributed errors. Bement and Williams (1969) use (1.3), and construct

approximations (as m co)for the exact covariance matrix of the resulting

weighted least squares estimate. They do not discuss asymptotic

distributions as N -* o with m fixed. Fuller & Rao (1978) use (1.4) while

Cochran (1937) and Neyman & Scott (1948) use (1.5). Both find limiting

distributions as N -* o for fixed m > 3, although the latter two papers

consider only the case that x 1 E -, ;

One striking result concerns consistency. The estimates SV, 13EL and

PML are always consistent for symmetrically distributed errors but generally '4
0

not otherwise: see Theorems 1 and 3. In Section 5. we compute the limit

distributions of and PM. The relative efficiency of the two is

contrasted in the normal case for m > 3, as follows.

Remark I : If ordinary least squares is less than 3 times more variable than

weighted least squares with known weights, then 1EL is more efficient than

maximum likelihood.

Remark 2 : If ordinary least squares is more than 5 times more variable than

weighted least squares with known weights, then maximum likelihood is more .,

efficient.

Further, for normally dibtributed data, maximum likelihood is more variable

than weighted least squares with known weights by a factor m/(m-2). This

means a tripling of variance for m = 3 even when using maximum likelihood.

A A * --
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Section 2 Assumptions and Canonical Decomposition

We will assume throughout that (x., at) are independent and identically

distributed bounded radom vectors, independently distributed of the {e. j}.

We define z. = x./a. and d. = a./a.. For any weighted least squares
I. L L 1. 1 L

estimator with estimated weights w2 = at,

I, !
I.r.. N T 2- - N ./d

Sz t zt /d, N - t  (2.1)

Assuming they exist, we note that the asymptotic covariance of the weighted

and unweighted least squares estimators are, respectively,

SWLs- {E(zz)-l (2.2)

and

-lT -1 2 T T -.= {E(xx )} E(a xxT ) {E(xxT)} -
. (2.3)

'5 S

Section 3 : Wei- hting with Sample Variances

In this section, we describe consistency and asymptotic normality for

weighted least squares estimates PSV with the weights being the inverse of F

sample variances. We first describe the general case assuming that

sufficient moments exist. We then look more closely at the case of normally

distributed observations. In this setup,

2 lI m -
t j=l (

Define 77, - E(?/d2 h) and v E(IeIj/2/).

The first result indicates that we obtain consistency only when

= E(E./d = 0. (3.1)

This is true for symmetrically distributed data, but generally not otherwise.



THEOREM 1

(a) If V < and (, then

plim JISV = + (70, 911 E(z)a"K',

so that consistency holds only if E(z) = 0 or (3.1) holds.

(b) If v ,, <( o for j _ 2, k ( 2 and (3.1) holds, then (N) 1/2 - ()

is asymptotically Normal{O, 2 -1isasm2o2/7101) S }S. r .,

2 S

Proof of Theorem 1 : This follows from the weak law of large numbers and the

central limit theorem. o

For normally distributed observations, the assumption that v ( for

jk < 2 holds only if there are at least 6 replicates. In this case, we

have the following corollary. t,,

COfROLiARY 1 : Assume that the errors e.. are normally distributed. For m >

6, ( ( - 13) is asymptotically Normal(O, (m-3)/(m-5) S1). .

Comparing with (1.2). we see that the effect of using m > 6 replicates

to estimate sample variances causes an inflation of variance by the factor A.

(m-3)/(m-5) over weighted least squares with known weights. Even with m =

10, this results in a 40% increase in variance.

2
If one uses a standard statistical package with weights i/si, then the

resulting standard errors will also be asymptotically incorrect. Such

packages estimate the asymptotic covariance matrix of (%m) (ISV - ) by ,'

aSV where

N m
2 (Nm-Ip) ( - T 2 2

°SV /
( =l ji "i t,1"

• S,"-

.A- --
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- -1 N T 2
S = N I x.x./s.
WLS t=l 1

If m > 6 and if the data are normally distributed, then -2V con, erges in d

-2
probability to E(1/d 2 ) = (m-1)/(m-3). while (SwLs - (m-l)/(m-3) SWLS) -+ 0.

Thus. (2 - -1 -. 0. Asymptotically, therefore, standard errors
(aSV SVS S)'

1/2.
should be multiplied by {(m-3)/(m-5)} see Table 1.

Section 4 Sample Variances With m < 5 Replicates in the Normal Case

In this section, we consider normally distributed data with m < 5

replicates and the weights being the inverses of the sample variances. Here

Theorem 1 does not apply since 6./d. does not have finite variance. The

results here are based on the work of Cline (1986). We first state a general i'.

result which may be of independent interest. The results for weighted least

squares, assuming normal errors, are then derived as a corollary.

First, a few definitions are required. A positive function p is

regularly varying with exponent p, denoted by W E RV(p), if

J4Jt )/,I(t -+ YP as t - o for all y > 0.

Let (zt,. u, w ) be independent and identically distributed random

variables with z. E IRp independent of (ut , wt), u, with a symmetric

distribution and w. > 0. Define pl(t) = E{w I(w < t)} and 12 (t) =

2E{(uw) I(uw t)}. Let (clN, c2) be constants satisfying, as N -.

2N Pl(clN)/ClN -+ 1 and N p 2 (c2.N)/c2N - .

If aI < 1, then 1  Sl(al) will denote a positive stable random

variable with Laplace transform

E{exp(-tSl)} = exp(-F(2-a) /al.

If a1  1 then S1 = 1 almost surely. We will denote by S2 = S2 (a 2 ) a •

symmetric stable random variable with characteristic function
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E{exp(itS2 )) = exp-F(3-a2 ) cos(7ra2/2) 2 a/( (1-))} .11

Of course, if a2 = 2 then 2 is standard normal.

THEOREM 2 Assume that l RV(l-al). 112 E RV(2-a2 ) and that

N N

1 E sW. c I ~u WJ (4.1)I NY t=l 2N i = l i tJ-.

is asymptotically distributed as IS(a), S2(a2) Suppose that for some 6 >

0 and all t.j.

E(I z.Il) < - for -Y = min(2, max(2al.a2) + ).

Then there exists YI, Y2 (Y2 e IRP Y, pxp positive definite) such that

1N =(l/2N) .ztt L t  L t~~.
i~~l ~ t=l ;"

is asymptotically distributed as Y -1 Y2" Further, for any b e IRP, bTY b and

bTY have the same distrtb',tions, respectively, as
Y2

z11a 20
{E[IbTz al}l1 { (IbT 2]} 2

Remark 3 In Theorem 2. Y and Y are not necessarily independent unless a11 Y21
T

1 or a2 = 2. In the former case, Y, = E(zz ) almost surely, while in the

T
latter case Y is normally distributed with mean zero and covariance E(zz).

2

Proof of Theorem 2 Consider first the case a1 < 1. From Theorem 1 of Cline 4.

(19S6) we get

[ l N -. N
I l t t 'c2N t=l t t ,

is asymptotically distributed as (Y1 Y2) In the case that a I= 1. then S I  Or

1 almost surely by Feller (1971, p. 236). From unpublished work of Cline and

[k -



from Gnedenko & Kolmogorov ((1954), p. 134), for each (j,.z),

-1 N
plim ClN tz tj . = E(z ztk )

-1

The joint convergence of the remaining terms, c2N 1z..w.t W i' again follows

from Theorem 1 of Cline (1986).

In either case, convergence of the ratio bN follows. The limiting joint

distribution is difficult to describe, but the stated marginal distributions

of bT Y b and bTY2 can be inferred from Proposition 3 of BrPiman (1965) and

Theorem 3 of Maller (1981). One may also conclude that Y1 and Y2 are

independent if a1 = 1, since then Y1 is degenerate. Also, Y1 and Y2 are

independent if a2 = 2, since then Y2 is Gaussian, and for such limits the

ncn-Caussian stable component is always independent of the Gaussian component

(c.f., Sharpe, 1969). D3

* -V1
Special Cases : If (t/al) Pr(w > t) -. 1 for -yl > 0, then we have the

following cases:

1/a1
(i) If 1<1, then ai---T1 , CIN = a1 {N/(l-al)} , and S 1 is positive

stable.

(ii) If -r=1, then al=1, CN =a N log(N), and S1  1.

(iii) If -Y >1, then a1=, ClN = N E(w), and S 1 = 1.

'2
If (t/a2) Pr(IuwI > t) -*1 for 'Y2 > O, then we have the following cases:

1/a2
() If ,( then a -r a cN(i) I 2 = a2 {N/(2-a2 )) , and S2 is symmetric

stable.

(ii) If Y 2=2, then a 2=2 c2N 2 1/2 a2 N 1/2 log(N), and S2 is Normal.
= 21/2 NE 2o(.an1 Si/ Nrml

(iii) If -r2>2, then a2=2, c N 1/2 [Eluw12J , and S2 is Normal.
2 2 N S
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Consider the case of normally distributed errors in model (1.1), where NW

T
we make the identifications z. = x./c., with E(zz) SL. Further, write1, 1, ,, ,

- -1 ...

U. F. =m . -
1 1 j= 1

and

= {(-lE) . - f.)i, j=l tJ"""

Of course, u. and w. are independent and E(u 2) <. Set a = (m-l)/2, a = a

-1/a 1/2 1/a.

{Io+a)} and b (2/m) {F((l+a)/2)} Then (t/a) a Pr(w > t) - 1,

(t/ab)a Pr(IuwI > t) -* 1 and if a > 1. E(w) a/(a-1). With the indicated

choices of clN and c 2N, Theorem 1 of Cline (1986a) shows that (4.1) holds.

Thus the conditions of Theorem 2 are met.

COROLLARY 2 * In the norma'.y distributed case, with SI , S YI' Y as
1' 2 1' 2

defined in Theorem 2. we have the following cases:

Case I (m 2) : a = a2 = 1/2. and

- 13) is asymptotically distributed as F2 (3/4)/(97r) Y 1
1 Y2

Case 2 (m =3) : a = a = 1. and

log(N) (PSV is asymptotically distributed as {2/(37r)) I/ 2  Y 1 Y

Case 3 (m,- 4) : a = 1. a2 = 3/2. and

1/3 2-1/2 2 1/3
N ()SV- 13) is asymptoticolly distributed as 2 {F (1/4)/(18r)} /3

Y Y
1 Y2"

Case 4 (m = 5) : a1 =1, a = 2 and -IY2

1/2 -1/2 -1
N /log(N) (kSV P) is asymptotically distributed as 5-  Y1 '

1 25

Case 5 (m > 6) Covered by Corollary I already.o
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Proof of Corollary 2 In the notation of Theorem 2. b = (clN/C2N) AV - ()

is asymptotically distributed as Y1-1 Y2 " Thus, in each case it suffices to

construct the constants (cIN, C 2)..

(m = 2-) :Here a = 1/2. cIN = (8/7r) N2 and c2N = {8 F2(3 /4 )/(97 r
2 )} N2

( = 3: Here a = 1, ClN = N log(N) and c2N = {2/(37r)} I/ 2 N.

(A = 4) Here a = 3/2, c 3 N and c 2-1/2 {3 I2(1/4)/(2r)}1/3 N2 / 3 .

( = 51 :Here a = 2, cin = 2 N and c2N = 2 5-1/2 N1/2 log(N),

Section 5 Estimating Variances by Sample Average Squared Errors

One might reasonably conjecture that making use of the known linear

structure for the means results in improvements over using only sample

variances. We will show that this is the case, at least for normally

distributed data. Let PO be any estimate of P, and define

-1 T 2ort(O) = Mt1 (Yii - xt i PO)

j=l U t

and d(PO) = ot(13)/u t . We denote by PG the weighted estimate with the

estimated weights 1/ (0) As defined in the introduction. 3 uses Po

PL -the ordinary unweighted least squares estimate, and PML used PO = PML"

Our results here rely on the consistency of and two other reasonable

moment conditions for m large enough. Here are the assumptions.

plim P0 -1. (5.1 )

For each c > 0. there exists c2 > 0 such that1 - 2
E{ sup Jd.(1) - t(3 } C (5.2)

a n d su c h th a t '-.

,-sup 6 -a( } d t (5.3)

In addition, we assume the finite existence of

.5,.

,P9,
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TI E{6V/d (1)}• v, E{ Ij/ < for j,k < 2. (5.4)

The first result describes the consistency of

THEO)REM 3 Assume (5.1) -(5.4). Then

plim PG = P + Tll(Tio1 SW.S)  E(z). (5.5)

Thus. is consistent only if 71,= 0 or E(z) = 0. Further, as N -.

n (PC - P) = [bN + C ( 2 - 13)] (5.6)

-1/2 - 2 ''-where plim AN = LS, bN =N I z.6td()cand plimC. 2
n~~~~~ '11n2 WS

Proof of Theorem 3 : Since the {z,) are bounded, the assumptions make

possible the usual Taylor's series argument leading to (5.6) and (5.5) is an

immediate consequence of (5.6). 0

Assuming consistency of the maximum likelihood estimator, we can compute

the limit distributions of and .

THEOREM 4 Make the assumptions of Theorem 3. with the {e. being

. .

symmetrically distributed.

(a) Let V1 = E(xx T ) and V2 = E(u2 xxT) be finite and positive definite.-,1 -1 -1 -

Let = V V2 V 2 . Then with 0 chosen as the unwetghted least squares
L 1)12 2E PO'

estimate, (13 - 13) is asymptotically Normal(OS1), where
-1 2 -I S-I 0

EL= m( 22/rO1 ) {(1 + 4 121) S + 4 n22L

(b) With = P the maximum likelihood estimate, then

(N)/2 (ML- 13) is asymptotically Normal(O, SML ) , where

- -2 -I
L= m 7122 (r701 -q22) S s  0 'a--

- ............... . ..- _
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Proof of Theorem 4 Parts (a) and (b) follow easily from Theorem 3,

Slutsky's theorem and the fact that (Nm)1/ 2  -1/) is asymptotically

Normal(O.SL
1).. 

0 .

OX)ROLLARY 3 For normally distributed observations with m > 3,

(/2 - P) and 1NmI/2 ( - 3) are asymptotically normal ly

distributed with respective couariances
2 -1 -2 sL1) -

{m/(m-2) )  and (1 + 2m- 
- -2 ) SWL S + 1n2 SL}. Dm-

Proof of Corollary 3 By direct calculation as in Fuller & Rao (1978), 

=01 m/(m-2). T2l = 1/ and 722 = 1/(n-2) 0

°21 -

As noted by Fuller & Rao (1978), the asymptotic covariance of EL'

consists of a mixture of the weighted least squares covariance S and the

unweighted least squares covariance SL Comparing 13 with the maximum
--a L depends on how much bigger S-1 is than S- 1

likelihood estimate bge
L3 M W"'4%

Detailed calculations verify Remarks 1 and 2 of the introduction. Thus, .-,-:

doing iterative weighted least squares may actually hurt. unless the starting .'

value 13L is sufficiently bad.

Section 6 Discussion 0

Our results can be summarized as follows .4'

(a) If nothing is known about the structure of the sample variances,

then none of the common weighted estimates can be assumed to be consistent 0

for data from an asymmetric distribution.

"N.
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(b) Using sample variances as a basis for estimating weights is

inefficient unless the number of replicates m is fairly large, e.g.. m > 10. ,-

(c) Using sample average squared errors from a preliminary fit to the K-

regression function as a basis for estimating weights is typically more

efficient than using sample variances. However, even here a fair number of

replicates is helpful. For example, the maximum likelihood estimate for W,

normally distributed data based on 6 replicates still has standard errors

approximately 20% larger than ordinary weighted least squares theory would

suggest.

There are at least two alternative methods for estimating the weights.

The first is to model the variances parametrically. e.g., q

T 0
at = U(x ).

See Carroll & Ruppert (1987) and Davidian & Carroll (1987). The second is to

perform a nonparametric regression of (1.3) and (1.4) against the predictors

and use this regression to estimate the weights (c.f. Carroll, 1982).
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TABLE 1

A summary of the results when the weights are the inverses of sample
variances based on m replicates. The relative efficiency is calculated with
respect to weighted least squares with known weights. The column labelled
"Standard Error Factor" is the number one should multiply standard errors
from a weighted least squares package by to obtain asymptotically correct
standard errors.

Asymptotically Rate of Relative Standard Error
(m) Consistent? Normal? convergence Efficiency Factor

2 No No - 0

3 Yes No log(N) 0
LI

N1/3 o.
4 Yes No N01 3  0

5 Yes Yes N Ilog(N) 0

6 Yes Yes N1 / 2  1/3 1.73

7 Yes Yes NI/  1/2 1.41

8 Yes Yes N1 / 2  3/5 1.26
1

9 Yes Yes NI1 2  2/3 1.22

10 Yes Yes NI/ 2  5/7 1.18
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